Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38610086

RESUMO

Reading skills and developmental dyslexia, characterized by difficulties in developing reading skills, have been associated with brain anomalies within the language network. Genetic factors contribute to developmental dyslexia risk, but the mechanisms by which these genes influence reading skills remain unclear. In this preregistered study (https://osf.io/7sehx), we explored if developmental dyslexia susceptibility genes DNAAF4, DCDC2, NRSN1, and KIAA0319 are associated with brain function in fluently reading adolescents and young adults. Functional MRI and task performance data were collected during tasks involving written and spoken sentence processing, and DNA sequence variants of developmental dyslexia susceptibility genes previously associated with brain structure anomalies were genotyped. The results revealed that variation in DNAAF4, DCDC2, and NRSN1 is associated with brain activity in key language regions: the left inferior frontal gyrus, middle temporal gyrus, and intraparietal sulcus. Furthermore, NRSN1 was associated with task performance, but KIAA0319 did not yield any significant associations. Our findings suggest that individuals with a genetic predisposition to developmental dyslexia may partly employ compensatory neural and behavioral mechanisms to maintain typical task performance. Our study highlights the relevance of these developmental dyslexia susceptibility genes in language-related brain function, even in individuals without developmental dyslexia, providing valuable insights into the genetic factors influencing language processing.


Assuntos
Dislexia , Fenômenos Fisiológicos do Sistema Nervoso , Adolescente , Humanos , Adulto Jovem , Encéfalo/diagnóstico por imagem , Dislexia/diagnóstico por imagem , Dislexia/genética , Genótipo , Proteínas Associadas aos Microtúbulos/genética , Leitura
2.
PLoS Biol ; 22(3): e3002534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466713

RESUMO

Selective attention-related top-down modulation plays a significant role in separating relevant speech from irrelevant background speech when vocal attributes separating concurrent speakers are small and continuously evolving. Electrophysiological studies have shown that such top-down modulation enhances neural tracking of attended speech. Yet, the specific cortical regions involved remain unclear due to the limited spatial resolution of most electrophysiological techniques. To overcome such limitations, we collected both electroencephalography (EEG) (high temporal resolution) and functional magnetic resonance imaging (fMRI) (high spatial resolution), while human participants selectively attended to speakers in audiovisual scenes containing overlapping cocktail party speech. To utilise the advantages of the respective techniques, we analysed neural tracking of speech using the EEG data and performed representational dissimilarity-based EEG-fMRI fusion. We observed that attention enhanced neural tracking and modulated EEG correlates throughout the latencies studied. Further, attention-related enhancement of neural tracking fluctuated in predictable temporal profiles. We discuss how such temporal dynamics could arise from a combination of interactions between attention and prediction as well as plastic properties of the auditory cortex. EEG-fMRI fusion revealed attention-related iterative feedforward-feedback loops between hierarchically organised nodes of the ventral auditory object related processing stream. Our findings support models where attention facilitates dynamic neural changes in the auditory cortex, ultimately aiding discrimination of relevant sounds from irrelevant ones while conserving neural resources.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Fala , Retroalimentação , Eletroencefalografia/métodos , Córtex Auditivo/fisiologia , Estimulação Acústica/métodos
4.
Netw Neurosci ; 7(4): 1302-1325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144696

RESUMO

Current knowledge of white matter changes in large-scale brain networks in adult attention-deficit/hyperactivity disorder (ADHD) is scarce. We collected diffusion-weighted magnetic resonance imaging data in 40 adults with ADHD and 36 neurotypical controls and used constrained spherical deconvolution-based tractography to reconstruct whole-brain structural connectivity networks. We used network-based statistic (NBS) and graph theoretical analysis to investigate differences in these networks between the ADHD and control groups, as well as associations between structural connectivity and ADHD symptoms assessed with the Adult ADHD Self-Report Scale or performance in the Conners Continuous Performance Test 2 (CPT-2). NBS revealed decreased connectivity in the ADHD group compared to the neurotypical controls in widespread unilateral networks, which included subcortical and corticocortical structures and encompassed dorsal and ventral attention networks and visual and somatomotor systems. Furthermore, hypoconnectivity in a predominantly left-frontal network was associated with higher amount of commission errors in CPT-2. Graph theoretical analysis did not reveal topological differences between the groups or associations between topological properties and ADHD symptoms or task performance. Our results suggest that abnormal structural wiring of the brain in adult ADHD is manifested as widespread intrahemispheric hypoconnectivity in networks previously associated with ADHD in functional neuroimaging studies.

5.
Eur J Neurosci ; 58(7): 3686-3704, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37752605

RESUMO

Human listeners prefer octave intervals slightly above the exact 2:1 frequency ratio. To study the neural underpinnings of this subjective preference, called the octave enlargement phenomenon, we compared neural responses between exact, slightly enlarged, oversized, and compressed octaves (or their multiples). The first experiment (n = 20) focused on the N1 and P2 event-related potentials (ERPs) elicited in EEG 50-250 ms after the second tone onset during passive listening of one-octave intervals. In the second experiment (n = 20) applying four-octave intervals, musician participants actively rated the different octave types as 'low', 'good' and 'high'. The preferred slightly enlarged octave was individually determined prior to the second experiment. In both experiments, N1-P2 peak-to-peak amplitudes attenuated for the exact and slightly enlarged octave intervals compared with compressed and oversized intervals, suggesting overlapping neural representations of tones an octave (or its multiples) apart. While there were no differences between the N1-P2 amplitudes to the exact and preferred enlarged octaves, ERP amplitudes differed after 500 ms from onset of the second tone of the pair. In the multivariate pattern analysis (MVPA) of the second experiment, the different octave types were distinguishable (spatial classification across electroencephalography [EEG] channels) 200 ms after second tone onset. Temporal classification within channels suggested two separate discrimination processes peaking around 300 and 700 ms. These findings appear to be related to active listening, as no multivariate results were found in the first, passive listening experiment. The present results suggest that the subjectively preferred octave size is resolved at the late stages of auditory processing.


Assuntos
Potenciais Evocados , Música , Humanos , Psicoacústica , Eletroencefalografia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica
6.
Cereb Cortex ; 33(8): 4740-4751, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36178127

RESUMO

Human language units are hierarchical, and reading acquisition involves integrating multisensory information (typically from auditory and visual modalities) to access meaning. However, it is unclear how the brain processes and integrates language information at different linguistic units (words, phrases, and sentences) provided simultaneously in auditory and visual modalities. To address the issue, we presented participants with sequences of short Chinese sentences through auditory, visual, or combined audio-visual modalities while electroencephalographic responses were recorded. With a frequency tagging approach, we analyzed the neural representations of basic linguistic units (i.e. characters/monosyllabic words) and higher-level linguistic structures (i.e. phrases and sentences) across the 3 modalities separately. We found that audio-visual integration occurs in all linguistic units, and the brain areas involved in the integration varied across different linguistic levels. In particular, the integration of sentences activated the local left prefrontal area. Therefore, we used continuous theta-burst stimulation to verify that the left prefrontal cortex plays a vital role in the audio-visual integration of sentence information. Our findings suggest the advantage of bimodal language comprehension at hierarchical stages in language-related information processing and provide evidence for the causal role of the left prefrontal regions in processing information of audio-visual sentences.


Assuntos
Mapeamento Encefálico , Compreensão , Humanos , Compreensão/fisiologia , Encéfalo/fisiologia , Linguística , Eletroencefalografia
7.
Sci Rep ; 12(1): 18789, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335137

RESUMO

Selective listening to cocktail-party speech involves a network of auditory and inferior frontal cortical regions. However, cognitive and motor cortical regions are differentially activated depending on whether the task emphasizes semantic or phonological aspects of speech. Here we tested whether processing of cocktail-party speech differs when participants perform a shadowing (immediate speech repetition) task compared to an attentive listening task in the presence of irrelevant speech. Participants viewed audiovisual dialogues with concurrent distracting speech during functional imaging. Participants either attentively listened to the dialogue, overtly repeated (i.e., shadowed) attended speech, or performed visual or speech motor control tasks where they did not attend to speech and responses were not related to the speech input. Dialogues were presented with good or poor auditory and visual quality. As a novel result, we show that attentive processing of speech activated the same network of sensory and frontal regions during listening and shadowing. However, in the superior temporal gyrus (STG), peak activations during shadowing were posterior to those during listening, suggesting that an anterior-posterior distinction is present for motor vs. perceptual processing of speech already at the level of the auditory cortex. We also found that activations along the dorsal auditory processing stream were specifically associated with the shadowing task. These activations are likely to be due to complex interactions between perceptual, attention dependent speech processing and motor speech generation that matches the heard speech. Our results suggest that interactions between perceptual and motor processing of speech relies on a distributed network of temporal and motor regions rather than any specific anatomical landmark as suggested by some previous studies.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Fala/fisiologia , Estimulação Acústica/métodos , Percepção da Fala/fisiologia , Imageamento por Ressonância Magnética , Atenção/fisiologia , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos
8.
Front Behav Neurosci ; 16: 958580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212193

RESUMO

Exposure to early life stress (ELS) is associated with a variety of detrimental psychological and neurodevelopmental effects. Importantly, ELS has been associated with regional alterations and aberrant connectivity in the structure and functioning of brain regions involved in emotion processing and self-regulation, creating vulnerability to mental health problems. However, longitudinal research regarding the impact of ELS on functional connectivity between brain regions in the default mode network (DMN) and fronto-limbic network (FLN), both implicated in emotion-related processes, is relatively scarce. Neuroimaging research on ELS has mostly focused on single nodes or bi-nodal connectivity instead of functional networks. We examined how ELS is associated with connectivity patterns within the DMN and FLN during rest in early adulthood. The participants (n = 86; 47 females) in the current functional magnetic resonance imaging (fMRI) study were young adults (18-21 years old) whose families had participated in a longitudinal study since pregnancy. ELS was assessed both prospectively (parental reports of family relationship problems and mental health problems during pregnancy and infancy) and retrospectively (self-reported adverse childhood experiences). Inter-subject representational similarity analysis (IS-RSA) and multivariate distance matrix regression (MDMR) were used to analyze the association between ELS and the chosen networks. The IS-RSA results suggested that prospective ELS was associated with complex alterations within the DMN, and that retrospective ELS was associated with alterations in the FLN. MDMR results, in turn, suggested that that retrospective ELS was associated with DMN connectivity. Mean connectivity of the DMN was also associated with retrospective ELS. Analyses further showed that ELS-related alterations in the FLN were associated with increased connectivity between the prefrontal and limbic regions, and between different prefrontal regions. These results suggest that exposure to ELS in infancy might have long-lasting influences on functional brain connectivity that persist until early adulthood. Our results also speak for the importance of differentiating prospective and retrospective assessment methods to understand the specific neurodevelopmental effects of ELS.

9.
Front Behav Neurosci ; 16: 790478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35706832

RESUMO

Previous studies have examined the neural correlates of receiving negative feedback from peers during virtual social interaction in young people. However, there is a lack of studies applying platforms adolescents use in daily life. In the present study, 92 late-adolescent participants performed a task that involved receiving positive and negative feedback to their opinions from peers in a Facebook-like platform, while brain activity was measured using functional magnetic resonance imaging (fMRI). Peer feedback was shown to activate clusters in the ventrolateral prefrontal cortex (VLPFC), medial prefrontal cortex (MPFC), superior temporal gyrus and sulcus (STG/STS), and occipital cortex (OC). Negative feedback was related to greater activity in the VLPFC, MPFC, and anterior insula than positive feedback, replicating previous findings on peer feedback and social rejection. Real-life habits of social media use did not correlate with brain responses to negative feedback.

10.
Brain Res ; 1775: 147739, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843702

RESUMO

Selective listening to speech depends on widespread networks of the brain, but how the involvement of different neural systems in speech processing is affected by factors such as the task performed by a listener and speech intelligibility remains poorly understood. We used functional magnetic resonance imaging to systematically examine the effects that performing different tasks has on neural activations during selective attention to continuous audiovisual speech in the presence of task-irrelevant speech. Participants viewed audiovisual dialogues and attended either to the semantic or the phonological content of speech, or ignored speech altogether and performed a visual control task. The tasks were factorially combined with good and poor auditory and visual speech qualities. Selective attention to speech engaged superior temporal regions and the left inferior frontal gyrus regardless of the task. Frontoparietal regions implicated in selective auditory attention to simple sounds (e.g., tones, syllables) were not engaged by the semantic task, suggesting that this network may not be not as crucial when attending to continuous speech. The medial orbitofrontal cortex, implicated in social cognition, was most activated by the semantic task. Activity levels during the phonological task in the left prefrontal, premotor, and secondary somatosensory regions had a distinct temporal profile as well as the highest overall activity, possibly relating to the role of the dorsal speech processing stream in sub-lexical processing. Our results demonstrate that the task type influences neural activations during selective attention to speech, and emphasize the importance of ecologically valid experimental designs.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Córtex Cerebral/diagnóstico por imagem , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Córtex Cerebral/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto Jovem
11.
Neuroimage ; 224: 117365, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941985

RESUMO

Recent studies utilizing electrophysiological speech envelope reconstruction have sparked renewed interest in the cocktail party effect by showing that auditory neurons entrain to selectively attended speech. Yet, the neural networks of attention to speech in naturalistic audiovisual settings with multiple sound sources remain poorly understood. We collected functional brain imaging data while participants viewed audiovisual video clips of lifelike dialogues with concurrent distracting speech in the background. Dialogues were presented in a full-factorial design, comprising task (listen to the dialogues vs. ignore them), audiovisual quality and semantic predictability. We used univariate analyses in combination with multivariate pattern analysis (MVPA) to study modulations of brain activity related to attentive processing of audiovisual speech. We found attentive speech processing to cause distinct spatiotemporal modulation profiles in distributed cortical areas including sensory and frontal-control networks. Semantic coherence modulated attention-related activation patterns in the earliest stages of auditory cortical processing, suggesting that the auditory cortex is involved in high-level speech processing. Our results corroborate views that emphasize the dynamic nature of attention, with task-specificity and context as cornerstones of the underlying neuro-cognitive mechanisms.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Percepção da Fala/fisiologia , Fala/fisiologia , Estimulação Acústica/métodos , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Percepção Visual/fisiologia , Adulto Jovem
12.
Artigo em Inglês | MEDLINE | ID: mdl-32824057

RESUMO

An increasing number of studies have addressed how adolescents' social media use is associated with depressive symptoms. However, few studies have examined whether these links occur longitudinally across adolescence when examined at the individual level of development. This study investigated the within-person effects between active social media use and depressive symptoms using a five-wave longitudinal dataset gathered from 2891 Finnish adolescents (42.7% male, age range 13-19 years). Sensitivity analysis was conducted, adjusting for gender and family financial status. The results indicate that depressive symptoms predicted small increases in active social media use during both early and late adolescence, whereas no evidence of the reverse relationship was found. Yet, the associations were very small, statistically weak, and somewhat inconsistent over time. The results provide support for the growing notion that the previously reported direct links between social media use and depressive symptoms might be exaggerated. Based on these findings, we suggest that the impact of social media on adolescents' well-being should be approached through methodological assumptions that focus on individual-level development.


Assuntos
Comportamento do Adolescente , Depressão/epidemiologia , Mídias Sociais , Adolescente , Adulto , Feminino , Finlândia/epidemiologia , Humanos , Estudos Longitudinais , Masculino , Adulto Jovem
13.
Hum Brain Mapp ; 41(17): 4876-4891, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32813290

RESUMO

The development of treatments for attention impairments is hampered by limited knowledge about the malleability of underlying neural functions. We conducted the first randomized controlled trial to determine the modulations of brain activity associated with working memory (WM) training in adults with attention-deficit hyperactivity disorder (ADHD). At baseline, we assessed the aberrant functional brain activity in the n-back WM task by comparing 44 adults with ADHD with 18 healthy controls using fMRI. Participants with ADHD were then randomized to train on an adaptive dual n-back task or an active control task. We tested whether WM training elicits redistribution of brain activity as observed in healthy controls, and whether it might further restore aberrant activity related to ADHD. As expected, activity in areas of the default-mode (DMN), salience (SN), sensory-motor (SMN), frontoparietal (FPN), and subcortical (SCN) networks was decreased in participants with ADHD at pretest as compared with healthy controls, especially when the cognitive load was high. WM training modulated widespread FPN and SN areas, restoring some of the aberrant activity. Training effects were mainly observed as decreased brain activity during the trained task and increased activity during the untrained task, suggesting different neural mechanisms for trained and transfer tasks.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/reabilitação , Córtex Cerebral/fisiopatologia , Remediação Cognitiva , Rede de Modo Padrão/fisiopatologia , Função Executiva/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiopatologia , Desempenho Psicomotor/fisiologia , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Avaliação de Resultados em Cuidados de Saúde , Adulto Jovem
14.
Front Neurosci ; 14: 436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477054

RESUMO

In real-life noisy situations, we can selectively attend to conversations in the presence of irrelevant voices, but neurocognitive mechanisms in such natural listening situations remain largely unexplored. Previous research has shown distributed activity in the mid superior temporal gyrus (STG) and sulcus (STS) while listening to speech and human voices, in the posterior STS and fusiform gyrus when combining auditory, visual and linguistic information, as well as in left-hemisphere temporal and frontal cortical areas during comprehension. In the present functional magnetic resonance imaging (fMRI) study, we investigated how selective attention modulates neural responses to naturalistic audiovisual dialogues. Our healthy adult participants (N = 15) selectively attended to video-taped dialogues between a man and woman in the presence of irrelevant continuous speech in the background. We modulated the auditory quality of dialogues with noise vocoding and their visual quality by masking speech-related facial movements. Both increased auditory quality and increased visual quality were associated with bilateral activity enhancements in the STG/STS. In addition, decreased audiovisual stimulus quality elicited enhanced fronto-parietal activity, presumably reflecting increased attentional demands. Finally, attention to the dialogues, in relation to a control task where a fixation cross was attended and the dialogue ignored, yielded enhanced activity in the left planum polare, angular gyrus, the right temporal pole, as well as in the orbitofrontal/ventromedial prefrontal cortex and posterior cingulate gyrus. Our findings suggest that naturalistic conversations effectively engage participants and reveal brain networks related to social perception in addition to speech and semantic processing networks.

15.
Neuroimage ; 216: 116352, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730921

RESUMO

Individuals with attention-deficit/hyperactivity disorder (ADHD) have difficulties navigating dynamic everyday situations that contain multiple sensory inputs that need to either be attended to or ignored. As conventional experimental tasks lack this type of everyday complexity, we administered a film-based multi-talker condition with auditory distractors in the background. ADHD-related aberrant brain responses to this naturalistic stimulus were identified using intersubject correlations (ISCs) in functional magnetic resonance imaging (fMRI) data collected from 51 adults with ADHD and 29 healthy controls. A novel permutation-based approach introducing studentized statistics and subject-wise voxel-level null-distributions revealed that several areas in cerebral attention networks and sensory cortices were desynchronized in participants with ADHD (n = 20) relative to healthy controls (n = 20). Specifically, desynchronization of the posterior parietal cortex occurred when irrelevant speech or music was presented in the background, but not when irrelevant white noise was presented, or when there were no distractors. We also show regionally distinct ISC signatures for inattention and impulsivity. Finally, post-scan recall of the film contents was associated with stronger ISCs in the default-mode network for the ADHD and in the dorsal attention network for healthy controls. The present study shows that ISCs can further our understanding of how a complex environment influences brain states in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Atenção , Percepção Auditiva , Encéfalo/diagnóstico por imagem , Filmes Cinematográficos , Percepção Visual , Estimulação Acústica/métodos , Adulto , Atenção/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
16.
J Acoust Soc Am ; 146(5): 3203, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31795691

RESUMO

For decades, the phenomenon of subjectively enlarged octaves has been investigated using sinusoidal and synthesized complex tones. The present study elaborates the topic with samples of real orchestra instruments in successive tone listening experiments. Compared to previous research, this study also included a substantially larger number of subjects (N = 36). Examined instrument tones were categorized into five groups based on their acoustic principles. In addition, each group was assessed at three dynamic levels (pp-mf-ff). Collected data were analyzed with tuning stretch curves by applying generalized additive models in the manner of the Railsback curve used to characterize piano tuning. Although the tuning curve modeled for the orchestra instruments was observed to differ slightly from the Railsback curve and typical Steinway D grand piano tuning (Steinway, New York), the stretching trends were qualitatively similar. Deviation from a mathematical equal-tempered scale was prominent. According to statistical analyses, dynamics or musical background of the participant did not affect results significantly, but some instrument groups exhibited differences in the curve extremities. In conclusion, the stretched scale is natural for a human listener and should be used as a reference scale in tuning machines instead of the mathematical equal-tempered scale.

17.
Front Hum Neurosci ; 13: 245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379540

RESUMO

In electroencephalography (EEG) measurements, processing of periodic sounds in the ascending auditory pathway generates the frequency-following response (FFR) phase-locked to the fundamental frequency (F0) and its harmonics of a sound. We measured FFRs to the steady-state (vowel) part of syllables /ba/ and /aw/ occurring in binaural rapid streams of speech sounds as frequently repeating standard syllables or as infrequent (p = 0.2) deviant syllables among standard /wa/ syllables. Our aim was to study whether concurrent active phonological processing affects early processing of irrelevant speech sounds reflected by FFRs to these sounds. To this end, during syllable delivery, our healthy adult participants performed tasks involving written letters delivered on a computer screen in a rapid stream. The stream consisted of vowel letters written in red, infrequently occurring consonant letters written in the same color, and infrequently occurring vowel letters written in blue. In the phonological task, the participants were instructed to press a response key to the consonant letters differing phonologically but not in color from the frequently occurring red vowels, whereas in the non-phonological task, they were instructed to respond to the vowel letters written in blue differing only in color from the frequently occurring red vowels. We observed that the phonological task enhanced responses to deviant /ba/ syllables but not responses to deviant /aw/ syllables. This suggests that active phonological task performance may enhance processing of such small changes in irrelevant speech sounds as the 30-ms difference in the initial formant-transition time between the otherwise identical syllables /ba/ and /wa/ used in the present study.

18.
Brain Behav ; 8(9): e01063, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30051640

RESUMO

BACKGROUND: Adolescence is a time of ongoing neural maturation and cognitive development, especially regarding executive functions. In the current study, age-related differences in the neural correlates of different executive functions were tracked by comparing three age groups consisting of adolescents and young adults. METHODS: Brain activity was measured with functional magnetic resonance imaging (fMRI) from 167 human participants (13- to 14-year-old middle adolescents, 16- to 17-year-old late adolescents and 20- to 24-year-old young adults; 80 female, 87 male) while they performed attention and working memory tasks. The tasks were designed to tap into four putative sub-processes of executive function: division of attention, inhibition of distractors, working memory, and attention switching. RESULTS: Behaviorally, our results demonstrated superior task performance in older participants across all task types. When brain activity was examined, young adult participants demonstrated a greater degree of overlap between brain regions recruited by the different executive tasks than adolescent participants. Similarly, functional connectivity between frontoparietal cortical regions was less task specific in the young adult participants than in adolescent participants. CONCLUSIONS: Together, these results demonstrate that the similarity between different executive processes in terms of both neural recruitment and functional connectivity increases with age from middle adolescence to early adulthood, possibly contributing to age-related behavioral improvements in executive functioning. These developmental changes in brain recruitment may reflect a more homogenous morphological organization between process-specific neural networks, increased reliance on a more domain-general network involved in executive processing, or developmental changes in cognitive strategy.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Função Executiva/fisiologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Fatores Etários , Atenção/fisiologia , Cognição/fisiologia , Feminino , Humanos , Inibição Psicológica , Masculino , Memória de Curto Prazo/fisiologia , Adulto Jovem
19.
Brain Res ; 1692: 12-22, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29702087

RESUMO

Modern environments are full of information, and place high demands on the attention control mechanisms that allow the selection of information from one (focused attention) or multiple (divided attention) sources, react to changes in a given situation (stimulus-driven attention), and allocate effort according to demands (task-positive and task-negative activity). We aimed to reveal how attention deficit hyperactivity disorder (ADHD) affects the brain functions associated with these attention control processes in constantly demanding tasks. Sixteen adults with ADHD and 17 controls performed adaptive visual and auditory discrimination tasks during functional magnetic resonance imaging (fMRI). Overlapping brain activity in frontoparietal saliency and default-mode networks, as well as in the somato-motor, cerebellar, and striatal areas were observed in all participants. In the ADHD participants, we observed exclusive activity enhancement in the brain areas typically considered to be primarily involved in other attention control functions: During auditory-focused attention, we observed higher activation in the sensory cortical areas of irrelevant modality and the default-mode network (DMN). DMN activity also increased during divided attention in the ADHD group, in turn decreasing during a simple button-press task. Adding irrelevant stimulation resulted in enhanced activity in the salience network. Finally, the irrelevant distractors that capture attention in a stimulus-driven manner activated dorsal attention networks and the cerebellum. Our findings suggest that attention control deficits involve the activation of irrelevant sensory modality, problems in regulating the level of attention on demand, and may encumber top-down processing in cases of irrelevant information.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Atenção/fisiologia , Mapeamento Encefálico , Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Estimulação Acústica , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Estimulação Luminosa , Desempenho Psicomotor , Tempo de Reação/fisiologia
20.
Int J Psychophysiol ; 127: 38-45, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29530819

RESUMO

Dual language experience has typically been shown to improve various executive control functions. We investigated with event-related brain potentials (ERPs) recorded from early (natively) bilingual speakers and control participants whether it also affects auditory selective attention. We delivered to our participants two tone streams, one to the left and one to the right ear. Both streams consisted of standard tones and two types of infrequent deviant tones which had either an enhanced duration or intensity. The participants were instructed to attend either to the right or left stream and to detect longer-duration deviants in the attended stream. The results showed that the early bilinguals did not outperform the controls in target detection accuracy or speed. However, the late portion of the attention-related ERP modulation (the negative difference, Nd) was larger over the left hemisphere in the early bilinguals than in the controls, suggesting that the maintenance of selective attention or further processing of selectively attended sounds is enhanced in the bilinguals. Moreover, the late reorienting negativity (RON) in response to intensity-deviant tones was larger in the bilinguals, suggesting more efficient disengagement of attention from distracting auditory events. Hence, our results demonstrate that brain responses associated with certain aspects of auditory attention are enhanced in the bilingual adults, indicating that early dual language exposure modulates the neuronal responsiveness of auditory modality.


Assuntos
Atenção/fisiologia , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados/fisiologia , Idioma , Estimulação Acústica , Adulto , Análise de Variância , Mapeamento Encefálico , Sinais (Psicologia) , Eletroencefalografia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Multilinguismo , Estimulação Luminosa , Tempo de Reação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...